Journal of Agricultural Science and Engineering
Articles Information
Journal of Agricultural Science and Engineering, Vol.5, No.2, Jun. 2019, Pub. Date: May 28, 2019
Emerging Trends of Silver Nanoparticles Application in Food Formulation – Safety Assessment and Regulatory Framework
Pages: 41-48 Views: 1355 Downloads: 322
[01] Nickolas Rigopoulos, Department of Food Science and Nutrition, University of the Aegean, Myrina Lemnos, Greece.
[02] Constantina Nasopoulou, Department of Food Science and Nutrition, University of the Aegean, Myrina Lemnos, Greece.
Nanotechnology applications in food formulation are associated with a wide range of benefits such as improved organoleptic characteristics and increased quality and safety of food products. Nanomaterials incorporated into a biopolymer matrix, are investigated as a new class of food packaging materials - known as active packaging - aiming to prolong self-life of the food products. Silver nanoparticles are the most common nanomaterials used in foodstuffs and food packaging formulation due to both their antioxidant capacity and antimicrobial activities against a wide range of pathogenic microorganisms. On the other hand nanotechnology used in food production conceals potential risks for the human health such as nanomaterials’ toxicity and potential migration of nanoparticles into foodstuffs, thus food safety assessment is essential in order to identify and restrict these potential risks. Additionally silver nanoparticles toxicity on freshwater algae and fish underlines the possible environmental impact which is fundamental to be moderated. The scope of this mini review is to present the recent trends of silver nanoparticles application in food industry, the potential risks that might occur and the European Legislation framework regarding nanotechnology implementation in food chain.
Nanotechnology, Silver Nanoparticles, Active and Intelligent Food Packaging, Antimicrobial Capacity, Safety Assessment, Nanomaterials Migration, European Legislation
[01] Kaphingst, K. A., Persky, S., Lachance, C. (2010). NIH Public Access., 14 (4): 384-399.
[02] Ravichandran, R. (2010). Nanotechnology Applications in Food and Food Processing: Innovative Green Approaches, Opportunities and Uncertainties for Global Market. International Journal of Green Nanotechnology: Physics and Chemisty, 1 (2): 72–96.
[03] Cushen, M., Kerry, J., Morris, M., Cruz-Romero, M., Cummins, E. (2012). Nanotechnologies in the Food Industry - Recent Developments, Risks and Regulation. Trends in Food Science and Technology, 24 (1): 30–46.
[04] Alfadul, S., Elneshwy, A. (2010). Use of Nanotechnology in Food Processing, Packaging and Safety – Review. African Journal of Food, Agriculture, Nutrition and Development, 10 (6).
[05] Wang, Z., Xu, H., Wu, J., Ye, J., Yang, Z. (2011). Sensitive Detection of Salmonella with Fluorescent Bioconjugated Nanoparticles Probe. Food Chemistry, 125 (2): 779–784.
[06] Qin, J. J., Oo, M. H., Kekre, K. A. (2007). Nanofiltration for Recovering Wastewater from a Specific Dyeing Facility. Separation and Purification Technology, 56 (2): 199–203.
[07] Bouwmeester, H., Dekkers, S., Noordam, M., Hagens, W., Bulder, A., Heer, C. De, Voorde, S. Ten, Wijnhoven, S., Sips, A. (2007). Health Impact of Nanotechnologies in Food Production, No. May, 1–91.
[08] Makarov, V. V., Love, A. J., Sinitsyna, O. V., Makarova, S. S., Yaminsky, I. V., Taliansky, M. E., Kalinina, N. O. (2014), “Green” Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants. Acta Naturae, 1 (20): 35–44.
[09] Zhang, X.-F., Liu, Z.-G., Shen, W., Gurunathan, S. (2016). Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. International Journal of Molecular Sciences, 17 (9): 1534.
[10] Ahmed, S., Ahmad, M., Swami, B. L., Ikram, S. (2016). A Review on Plants Extract Mediated Synthesis of Silver Nanoparticles for Antimicrobial Applications: A Green Expertise. Journal of Advanced Research, 7 (1): 17–28.
[11] He, X., Hwang, H. M. (2016). Nanotechnology in Food Science: Functionality, Applicability, and Safety Assessment. Journal of Food and Drug Analysis, 24 (4): 671–681.
[12] Hamad, A. F., Han, J. H., Kim, B. C., Rather, I. A. (2018). The Intertwine of Nanotechnology with the Food Industry. Saudi Journal of Biological Sciences, 25 (1): 27–30.
[13] Pathakoti, K., Manubolu, M., Hwang, H. M. (2017), Nanostructures: Current Uses and Future Applications in Food Science. Journal of Food and Drug Analysis, 25 (2): 245–253.
[14] Carbone, M., Donia, D. T., Sabbatella, G., Antiochia, R. (2016). Silver Nanoparticles in Polymeric Matrices for Fresh Food Packaging. Journal of King Saud University - Science, 28 (4): 273–279.
[15] Abou El-Nour, K. M. M., Eftaiha, A., Al-Warthan, A., Ammar, R. A. A. (2010). Synthesis and Applications of Silver Nanoparticles. Arabian Journal of Chemistry, 2010, 3 (3): 135–140.
[16] Yam, L. K., Takhistov, T. P., Miltz, J. (2005). Intelligent Packaging : Concepts and Applications. Journal of Food Science, 70 (1): 1–10.
[17] Rhim, J. W., Park, H. M., Ha, C. S. (2013). Bio-Nanocomposites for Food Packaging Applications. Progress in Polymer Science, 38 (10–11): 1629–1652.
[18] Mihindukulasuriya, S. D. F., Lim, L. T. (2014). Nanotechnology Development in Food Packaging: A Review. Trends in Food Science and Technology, 40 (2): 149–167.
[19] De Moura, M. R., Mattoso, L. H. C., Zucolotto, V. (2012). Development of Cellulose-Based Bactericidal Nanocomposites Containing Silver Nanoparticles and Their Use as Active Food Packaging. Journal of Food Engineering, 109 (3): 520–524.
[20] Arora, A., Padua, G. W. (2010). Review: Nanocomposites in Food Packaging. Journal of Food Science, 75 (1): 43–49.
[21] Rhim, J. (2007). Natural Biopolymer-Based Nanocomposite Films for Packaging Application, Critical Reviews in Food Science and Nutrition, 47 (4): 411-33.
[22] Akbari, Z., Ghomashchi, T., Moghadam, S. (2007). Improvement in Food Packaging Industry with Biobased Nanocomposites. International Journal of Food Engineering, 3 (4): 31-24.
[23] Llorens, A., Lloret, E., Picouet, P. A., Trbojevich, R., Fernandez, A. (2012). Metallic-Based Micro and Nanocomposites in Food Contact Materials and Active Food Packaging. Trends in Food Science and Technology, 24 (1): 19–29.
[24] Chen, X., Schluesener, H. J. (2008). Nanosilver: A Nanoproduct in Medical Application. Toxicology Letters, 176 (1), 1–12.
[25] Rai, M. K., Deshmukh, S. D., Ingle, A. P., Gade, A. K. (2012). Silver Nanoparticles: The Powerful Nanoweapon against Multidrug-Resistant Bacteria. Journal of Applied Microbiology, 112 (5): 841–852.
[26] Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C. Y., et al. (2007). Antimicrobial Effects of Silver Nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3 (1): 95–101.
[27] Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., Yacaman, M. J. (2005). The Bactericidal Effect of Silver Nanoparticles. Nanotechnology, 16 (10): 2346–2353.
[28] Benakashani, F., Allafchian, A. R., Jalali, S. A. H. (2016). Biosynthesis of Silver Nanoparticles Using Capparis Spinosa L. Leaf Extract and Their Antibacterial Activity. Karbala International Journal of Modern Science, 2 (4): 251–258.
[29] Belluco, S., Losasso, C., Patuzzi, I., Rigo, L., Conficoni, D., Gallocchio, F., Cibin, V., Catellani, P., Segato, S., Ricci, A. (2016). Silver as Antibacterial toward Listeria Monocytogenes. Frontiers in Microbiology, 7 (307): 1–9.
[30] Ingle, A., Gade, A., Pierrat, S., Sonnichsen, C., Rai, M. (2008). Mycosynthesis of Silver Nanoparticles Using the Fungus Fusarium Acuminatum and Its Activity Against Some Human Pathogenic Bacteria. Current Nanoscience, 4 (2): 141–144.
[31] Kvítek, L., Panáček, A., Soukupová, J., Kolář, M., Večeřová, R., Prucek, R., Holecová, M., Zbořil, R. (2008). Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs). The Journal of Physical Chemistry C, 112 (15): 5825–5834.
[32] Aruoma, O. I. (1998). Free Radicals, Oxidative Stress, and Antioxidants in Human Health and Disease. Journal of American Oil Chemists' Society, 75 (2): 199–212.
[33] Moure, A., Cruz, J. M., Franco, D., Manuel Domínguez, J., Sineiro, J., Domínguez, H., Núñez, M. J., Carlos Parajó, J. (2001). Natural Antioxidants from Residual Sources. Food Chemistry, 72 (2): 145–171.
[34] De la Torre Boronat, M. C., López, T. E. (1997). El papel de los antioxidants. Alimentaria, 6: 19 - 27.
[35] Phull, A. R., Abbas, Q., Ali, A., Raza, H., Kim, S. J., Zia, M., Haq, I. (2016). Antioxidant, Cytotoxic and Antimicrobial Activities of Green Synthesized Silver Nanoparticles from Crude Extract of Bergenia Ciliata. Futurure Journal of Pharmaceutical Sciences, 2 (1): 31–36.
[36] Bunghez, I. R., Barbinta Patrascu, M. E., Badea, N. M., Doncea, S. M., Popescu, A., Ion, R. M. (2012). Antioxidant Silver Nanoparticles Green Synthesized Using Ornamental Plants. Journal of Optoelectronics and Advanced Materials, 14 (11): 1016-1022.
[37] Abdel-Aziz, M. S., Shaheen, M. S., El-Nekeety, A. A., Abdel-Wahhab, M. A. (2014). Antioxidant and Antibacterial Activity of Silver Nanoparticles Biosynthesized Using Chenopodium Murale Leaf Extract. Journal of Saudi Chemical Society, 18 (4): 356–363.
[38] Bhakya, S., Muthukrishnan, S., Sukumaran, M., Muthukumar, M. (2016). Biogenic Synthesis of Silver Nanoparticles and Their Antioxidant and Antibacterial Activity. Applied Nanoscience, 6 (5): 755–766.
[39] Otunola, G. A., Afolayan, A. J. (2018). In Vitro Antibacterial, Antioxidant and Toxicity Profile of Silver Nanoparticles Green-Synthesized and Characterized from Aqueous Extract of a Spice Blend Formulation. Biotechnology & Biotechnological Equipment, 32 (3): 724–733.
[40] Duncan, T. V. (2011). Applications of Nanotechnology in Food Packaging and Food Safety: Barrier Materials, Antimicrobials and Sensors. Journal of Colloid and Interface Science, 363 (1): 1–24.
[41] Kampmann, Y., De Clerck, E., Kohn, S., Patchala, D. K., Langerock, R., Kreyenschmidt, J. (2008). Study on the Antimicrobial Effect of Silver-Containing Inner Liners in Refrigerators. Journal of Applied Microbiology, 104 (6): 1808–1814.
[42] Berrang, M. E., Frank, J. F., Meinersmann, R. J. (2010) Listeria Monocytogenes Biofilm Formation on Silver Ion Impregnated Cutting Boards. Poultry Science, 30 (3): 168–171.
[43] Appendini, P., Hotchkiss, J. H. (2002). Review of Antimicrobial Food Packaging. Innovative Food Science & Emerging Technologies, 3 (2): 113–126.
[44] Fernández A., Picouet, P., Lloret, E. (2010). Reduction of the Spoilage-Related Microflora in Absorbent Pads by Silver Nanotechnology during Modified Atmosphere Packaging of Beef Meat. Journal of Food Protection, 73 (12): 2263–2269.
[45] Fernández, A., Picouet, P., Lloret, E. (2010). Cellulose-Silver Nanoparticle Hybrid Materials to Control Spoilage-Related Microflora in Absorbent Pads Located in Trays of Fresh-Cut Melon. International Journal of Food Microbiology, 142 (1–2): 222–228.
[46] Morsy, M. K., Khalaf, H. H., Sharoba, A. M., El-Tanahi, H. H., Cutter, C. N. (2014). Incorporation of Essential Oils and Nanoparticles in Pullulan Films to Control Foodborne Pathogens on Meat and Poultry Products. Journal of Food Science, 79 (4): M675-M684.
[47] Abreu, A. S., Oliveira, M., De Sá, A., Rodrigues, R. M., Cerqueira, M. A., Vicente, A. A., Machado, A. V. (2015). Antimicrobial Nanostructured Starch Based Films for Packaging. Carbohydrate Polymers, 129: 127–134.
[48] Yang, F. M., Li, H. M., Li, F., Xin, Z. H., Zhao, L. Y., Zheng, Y. H., Hu, Q. H. (2010). Effect of Nano-Packing on Preservation Quality of Fresh Strawberry (Fragaria Ananassa Duch. Cv Fengxiang) during Storage at 4 °C. Journal of Food Science, 75 (3): C236-40
[49] Han, W., Yu, Y. J., Li, N. T., Wang, L. B. (2011). Application and Safety Assessment for Nano-Composite Materials in Food Packaging. Chinese Science Bulletin, 56 (12): 1216–1225.
[50] Zeng, J., Roberts, S., Xia, Y. (2010). Nanocrystal-Based Time-Temperature Indicators. Chemistry - A European Journal, 16 (42), 12559–12563.
[51] Kumar, N., Kumar, H., Mann, B., Seth, R. (2016). Colorimetric Determination of Melamine in Milk Using Unmodified Silver Nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 156: 89–97.
[52] Borase, H. P., Chandrashekhar, D. P., Salunkle, R. B., Suryawanashi, R. K., Salunke B. K., Patil, S. V. (2015). Biofunctionalized Silver Nanoparticles as Novel Colorimetric Probe for Melamine Detection in Raw Milk. Biotechnology and Applied Biochemistry, 62 (5): 652 - 662.
[53] Sun, Q., Cai, X., Li, J., Zheng, M., Chen, Z., Yu, C. P. (2014). Green Synthesis of Silver Nanoparticles Using Tea Leaf Extract and Evaluation of Their Stability and Antibacterial Activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 444: 226–231.
[54] Mariselvam, R., Ranjitsingh, A. J. A., Usha Raja Nanthini, A., Kalirajan, K., Padmalatha, C., Mosae Selvakumar, P. (2014). Green Synthesis of Silver Nanoparticles from the Extract of the Inflorescence of Cocos Nucifera (Family: Arecaceae) for Enhanced Antibacterial Activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 129: 537–541.
[55] Ali, Z. A. Yahya, R., Sekaran, S. D., Puteh, R. (2016). Green Synthesis of Silver Nanoparticles Using Apple Extract and Its Antibacterial Properties. Advances in Materials Science and Engineering, 2016: 1-6.
[56] Ibrahim, H. M. M. (2015). Green Synthesis and Characterization of Silver Nanoparticles Using Banana Peel Extract and Their Antimicrobial Activity against Representative Microorganisms. Journal of Radiation. Research and Applied Sciences, 8 (3): 265–275.
[57] Calzolai, L., Gilliland, D., Rossi, F. (2012). Measuring Nanoparticles Size Distribution in Food and Consumer Products: A Review. Food Additives and Contaminants. Part A, Chemistry, Analysis Control, Exposure & Risk Assessement, 29 (8): 1183–1193.
[58] Hunt, G., Lynch, I., Cassee, F., Handy, R. D., Fernandes, T. F., Berges, M., Kuhlbusch, T. A. J., Dusinska, M., Riediker, M. (2013). Towards a Consensus View on Understanding Nanomaterials Hazards and Managing Exposure: Knowledge Gaps and Recommendations. Materials (Basel), 6 (3): 1090–1117.
[59] Cushen, M., Kerry, J., Morris, M., Cruz-Romero, M., Cummins, E. (2014). Evaluation and Simulation of Silver and Copper Nanoparticle Migration from Polyethylene Nanocomposites to Food and an Associated Exposure Assessment. Journal of Agricultural and Food Chemistry, 62 (6): 1403–1411.
[60] Tiede, K., Boxall, A., Tear, S., Lewis, J., David, H., Hassellov, M. (2008). Detection and Characterization of Engineered Nanoparticles in Food and the Environment. Food Additives and Contaminants. Part A, Chemistry, Analysis Control, Exposure & Risk Assessement, 25 (7): 795–821.
[61] Šimon, P., Chaudhry, Q., Bakoš, D. (2008). Migration of Engineered Nanoparticles from Polymer Packaging to Food - A Physicochemical View. Journal of Food and Nutrition. Research, 47 (3): 105–113.
[62] Bott, J., Störmer, A., Franz, R. (2014). Migration of Nanoparticles from Plastic Packaging Materials Containing Carbon Black into Foodstuffs. Food Additives and Contaminants. Part A, Chemistry, Analysis Control, Exposure & Risk Assessement, 31 (10): 1769–1782.
[63] Huang, J. Y., Li, X., Zhou, W. (2015). Safety Assessment of Nanocomposite for Food Packaging Application. Trends in Food Science & Technology, 45 (2): 187–199.
[64] Souza, V. G. L., Fernando, A. L. (2016). Nanoparticles in Food Packaging: Biodegradability and Potential Migration to Food-A Review. Food Packaging and Shelf Life, 8: 63–70.
[65] Cushen, M., Kerry, J., Morris, M., Cruz-Romero, M., Cummins, E. (2013). Migration and Exposure Assessment of Silver from a PVC Nanocomposite. Food Chemistry, 139 (1–4): 389–397.
[66] Echegoyen, Y., Nerín, C. (2013). Nanoparticle Release from Nano-Silver Antimicrobial Food Containers. Food and Chemical Toxicology, 62: 16–22.
[67] Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., Aitken, R., Watkins, R. (2008). Applications and Implications of Nanotechnologies for the Food Sector. Food Additives and Contaminants. Part A, Chemistry, Analysis Control, Exposure & Risk Assessement, 25 (3): 241–258.
[68] Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., et al. (2005). Principles for Characterizing the Potential Human Health Effects from Exposure to Nanomaterials: Elements of a Screening Strategy. Particle and Fibre Toxicology, 2: 1–35.
[69] Stensberg, M. C., Wei, Q., Mclamore, E. S., Marshall, D. (2012). NIH Public Access., 6 (5): 879–898.
[70] Reidy, B., Haase, A., Luch, A., Dawson, K. A., Lynch, I. (2013). Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications. Materials (Basel), 6 (6): 2295–2350.
[71] Johnston, H. J., Hutchison, G., Christensen, F. M., Peters, S., Hankin, S., Stone, V. A. (2010). Review of the in Vivo and in Vitro Toxicity of Silver and Gold Particulates: Particle Attributes and Biological Mechanisms Responsible for the Observed Toxicity. Critical Reviews in Toxicology, 40 (4): 328–346.
[72] Khan, I., Saeed, K., Khan, I. (2017). Nanoparticles: Properties, Applications and Toxicities. Arabian Journal of Chemistry,
[73] Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T., Schlager, J. J. (2005). In Vitro Toxicity of Nanoparticles in BRL 3A Rat Liver Cells. Toxicology in Vitro, 19 (7): 975–983.
[74] Wen, H. C., Lin, Y. N., Jian, S. R., Tseng, S. C., Weng, M. X., Liu, Y. P., Lee, P. T., Chen, P. Y., Hsu, R. Q., Wu, W. F., et al. (2007). Observation of Growth of Human Fibroblasts on Silver Nanoparticles. Journal of Physics: Conference Series, 61: 445–449.
[75] Haase, A., Tentschert, J., Jungnickel, H., Graf, P., Mantion, A., Draude, F., Plendl, J., Goetz, M. E., Galla, S., Mašić, A.. et al. (2011). Toxicity of Silver Nanoparticles in Human Macrophages: Uptake, Intracellular Distribution and Cellular Responses. Journal of Physics: Conference Series, 304 (1): 1-14.
[76] Chairuangkitti, P., Lawanprasert, S., Roytrakul, S., Aueviriyavit, S., Phummiratch, D., Kulthong, K., Chanvorachote, P., Maniratanachote, R. (2013). Silver Nanoparticles Induce Toxicity in A549 Cells via ROS-Dependent and ROS-Independent Pathways. Toxicology in Vitro, 27 (1): 330–338.
[77] Sambale, F., Wagner, S., Stahl, F., Khaydarov, R. R., Scheper, T., Bahnemann, D. (2015). Investigations of the Toxic Effect of Silver Nanoparticles on Mammalian Cell Lines. Journal of Nanomaterials, 2015: 1-9.
[78] Ferreira, A. J., Cemlyn-Jones, J., Robalo Cordeiro, C. (2013). Nanoparticles, Nanotechnology and Pulmonary Nanotoxicology. Revista Portuguesa Pneumologia, 19 (1), 28–37.
[79] Wagner, B., Marconi, F., Kaegi, R., Odzak, N., Box, P. O., Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., et al. (2008). Toxicity of Silver Nanoparticles to Chlamydomonas Reinhardtii. Environmental Science & Technology, 42 (23): 8959–8964.
[80] Parliament, T. H. E. E., Council, T. H. E., The, O. F., Union, E. (2003). The European Parliament and the Council of The. Communities, 4 (11), 42–46.
[81] European Parliament and Council. Regulation (EC) No 178/2002. (2002). Laying down the General Principles and Requirements of Food Law, Establishing the European Food Safety Authority and Laying down Procedures in Matters of Food Safety. Official Journal of European Communities, L31, 1–24.
[82] Decision, C. (Text with EEA Relevance). Euratom (2004), 2001 (May), 20–30.
[83] The European Parliament and the Council of the European Union. Regulation (EC) No 258/97 Concerning Novel Foods and Novel Food Ingredients. (1997). Official Journal of European Union, L 43 (L), 1–6.
[84] European Council. DIRECTIVE 94/36/EC on Colours for Use in Foodstuffs. (1984). Official Journal of European Communities, L237 (1259), 13–29.
[85] Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contacts with Food (AFC) on a Request from the Commission Related to Coumarin Question Number EFSA-Q-2003-118. (2004). EFSA Journal, 104, 1–36.
[86] Guidance on the Risk Assessment of the Application of Nanoscience and Nanotechnologies in the Food and Feed Chain. (2011). EFSA Journal, 9 (5), 2140.
MA 02210, USA
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.