Chemistry Journal
Articles Information
Chemistry Journal, Vol.1, No.3, Jun. 2015, Pub. Date: Apr. 20, 2015
Inhibition of Peroxidase Activity by N-(3-Aminophenyl)-Arylsulfonamides Hydrochloride
Pages: 51-57 Views: 4648 Downloads: 1325
Authors
[01] Serkan Dayan, Erciyes University, Faculty of Science, Department of Chemistry, Kayseri, Turkey.
[02] Burcu Somturk, Erciyes University, Faculty of Science, Department of Chemistry, Kayseri, Turkey.
[03] Nilgun Kayaci, Erciyes University, Faculty of Science, Department of Chemistry, Kayseri, Turkey.
[04] Nalan Ozdemir, Erciyes University, Faculty of Science, Department of Chemistry, Kayseri, Turkey.
[05] Nilgun Kalaycioglu Ozpozan, Erciyes University, Faculty of Science, Department of Chemistry, Kayseri, Turkey.
[06] Hasan Ozdemir, Ataturk University, Faculty of Science, Department of Chemistry, Erzurum, Turkey.
Abstract
A new series of [N-(3-aminophenyl)-arylsulfonamides] hydrochloride (Aryl= 4-methoxybenzene, 4-tert-butylbenzene, 4-nitrobenzene, 4-chlorobenzene) compounds (1-4) were synthesized successfully with a simple method. The compounds (1-4) were elucidated on the basis of elemental and spectral analyses (NMR, FT-IR, EA) and their inhibitory effects on the activity of purified peroxidase (POD) enzyme were evaluated by UV-vis spectrophotometers. The POD enzyme was purified from red cabbage (Brassica oleracea var. capitata f. rubra) using affinity chromatography. The half maximal inhibitory concentration (IC50) values were found to be 0.144 mM, 0.2 mM, 0.117 mM and 0.185 mM for compounds 1, 2, 3 and 4 respectively. The inhibition results show that all the compounds (1-4) inhibited POD enzyme activity. Particular, the N-(3-aminophenyl)-4-nitrobenzenesulfonamide hydrochloride compound (3) was found as the most active compound for POD compared to the others.
Keywords
Sulfonamide, Peroxidase, Inhibition, Synthesis
References
[01] Andersen K.K.; Jones D.N. Pergamon Press. Oxford, 1979, 3, 345.
[02] a) González-Alvarez, M.; Alzuet, G.; Borrás, J.; del Castillo Agudo, L.; García-Granda, S.; Montejo-Bernardo, J.M. Comparison of protective effects against reactive oxygen species of mononuclear and dinuclear Cu(II) complexes with N-substituted benzothiazolesulfonamides. Inorg Chem. 2005, 44, 9424-9433.
[03] Cumaoglu, A.; Dayan, S.; Agakaya, O. A.; Ozkul, Z.; Ozpozan Kalaycioglu N.; J Enz. Inhib. Med. Chem. 2015, DOI: 10.3109/14756366.2014.940938.
[04] Dayan, S.; Ozpozan Kalaycıoğlu, N.; Daran, J-C.; Labande, A.; Poli, R. Synthesis and characterization of half-sandwich ruthenium complexes containing aromatic sulfonamides bearing pyridinyl rings: Catalysts for transfer hydrogenation of acetophenone derivatives. Eur. J. Inorg Chem. 2013, 18, 3224-3232.
[05] Chohan, Z.H.; Shad, H.A.; Supuran, C.T. Synthesis; characterization and biological studies of sulfonamide Schiff's bases and some of their metal derivatives. J Enzyme Inhib Med Chem. 2012, 1, 58-68.
[06] Dayan, S; Arslan, F.; Ozpozan Kalaycıoğlu, N. Ru(II) impregnated Al2O3, Fe3O4, SiO2 and N-coordinate ruthenium(II) arene complexes: Multifunctional catalysts in the hydrogenation of nitroarenes and the transfer hydrogenation of aryl ketones. App. Cat. B. Environ. 2015, 164, 305-315.
[07] Turkmen, H.; Zengin, G.; Buyukkircali, B. Synthesis of sulfanilamide derivatives and investigation of in vitro inhibitory activities and antimicrobial and physical properties. Bioorg Chem. 2011, 3, 114-119.
[08] Gangapuram, M.; Mazzio, E.; Eyunni, S.; Soliman, K.F.; Redda, K.K. Synthesis and Biological Evaluation of Substituted N-[3-(1H-Pyrrol-1-yl)methyl]-1;2;5;6-tetrahydropyridin-1-yl]benzamide/benzene Sulfonamides as Anti-Inflammatory Agents. Arch. Pharm. 2014, 5, 360-9.
[09] Chen, Z.; Xu, W.; Liu, K.; Yang, S.; Fan, H.; Bhadury, P.S.; Hu, D.Y.; Zhang, Y. Synthesis and antiviral activity of 5 (4 chlorophenyl)-1;3;4-thiadiazole sulfonamides. Molecules. 2010, 12, 9046-9056.
[10] Bashandy, M.S.; Alsaid, M.S.; Arafa, R.K.; Ghorab, M.M. Design; synthesis and molecular docking of novel N;N-dimethylbenzenesulfonamide derivatives as potential antiproliferative agents. J Enzyme Inhib Med Chem. 2013, 3, 1-9.
[11] Funahashi, Y.; Sugi, N.H.; Semba, T.; Yamamoto, Y.; Hamaoka, S.; Tsukahara-Tamai, N.; Ozawa, Y.; Tsuruoka, A.; Nara, K.; Takahashi, K.; Okabe, T.; Kamata, J.; Owa, T.; Ueda, N.; Haneda, T.; Yonaga, M.; Yoshimatsu, K.; Wakabayashi, T. Sulfonamide derivative; E7820; is a unique angiogenesis inhibitor suppressing an expression of integrin alpha2 subunit on endothelium. Cancer Res. 2002, 21, 6116-6123.
[12] Güzel, O.; Innocenti, A.; Vullo, D.; Scozzafava, A.; Supuran, C.T. 3-phenyl-1H-indole-5-sulfonamides: structure-based drug design of a promising class of carbonic anhydrase inhibitors. Curr Pharm Des. 2010, 29, 3317-3326.
[13] Owa, T.; Okauchi, T.; Yoshimatsu, K.; Sugi, N.H.; Ozawa, Y.; Nagasu, T.; Koyanagi, N.; Okabe, T.; Kitoh, K.; Yoshino, H. A focused compound library of novel N-(7-indolyl)benzenesulfonamides for the discovery of potent cell cycle inhibitors. Bioorg Med Chem Lett. 2000, 11, 1223-1226.
[14] O'Brien, T. M.; Oliveira, P. J.; Wallace, K. B. Inhibition of the adenine nucleotide translocator by N-acetyl perfluorooctane sulfonamides in vitro; Toxic. Appl. Pharma. 2008, 227, 184–195.
[15] Vullo, D.; Prete, S. D.; Osman, S. M.; De Luca V.; Scozzafava A.; AlOthman Z.; Supuran C. T.; Capasso C.; Sulfonamide inhibition studies of the d-carbonic anhydrase from the diatom Thalassiosira weissflogii; Bioorg. & Med. Chem. Lett. 2014, 24, 275–279.
[16] Nishimori, I.; Vullo, D.; Minakuchi, T.; Scozzafava, A.; Capasso, C.; Supuran, C. T.; Sulfonamide inhibition studies of two b-carbonic anhydrases from the bacterial pathogen Legionella pneumophila; Bioorg. & Med. Chem. 2014, 22, 2939–2946.
[17] Şişecioğlu, M.; Gülçin, İ.; Çankaya, M.; Atasever, A.; Şehitoglu, M. H.; Kaya, H. B. Özdemir, H.; Purification and characterization of peroxidase from Turkish black radish (Raphanus sativus L.); J. Medic. Plants Res. 2010, 4, 1187-1196.
[18] Kalin, R.; Atasever, A.; Ozdemir, H.; Single-step purification of peroxidase by 4-aminobenzohydrazide from Turkish blackradish and Turnip roots; Food Chem. 2014, 150, 335–340.
[19] Somtürk, B.; Kalın R.; Özdemir, N.; Purification of Peroxidase from Red Cabbage (Brassica oleracea var. capitata f. rubra) by Affinity Chromatography. Appl. Biochem. Biotechnol. 2014, 173, 1815-1828.
[20] Leon, J.C.; Alpeeva, I. S.; Chubar, T. A.; Galaev, I.Y.; Csoregi, E.; Sakharov, I.Y.. Purification and substrate specificity of peroxidase from sweet potato tubers. Plant Sci. 2002, 163, 1011-1019.
[21] Ajila, C. M. Prasada R. Purification and characterization of black gram (Vigna mungo) husk peroxidase. J. Mol. Catal B: Enzym. 2009, 60, 36–44.
[22] Kouakou, T. H.; Dué, E. A.; Kouadio, N. E. J. P.; Niamké, S.; Kouadio, Y. J.; Mérillon, J M.;. Purification and Characterization of Cell Suspensions Peroxidase from Cotton (Gossypium hirsutum L.). Appl. Biochem. Biotech. 2009, 157, 575- 592.
[23] Colonna, S.; Gaggero, N.; Richelmi, C.; Pasta, P.; Recent biotechnological developments in the use of peroxidase; Trends. Biotechnol. 1999, 17, 163-168.
[24] Regalodo, C.; Garcia-Almandarez, B. E.; Duarte-Vazquez, M. A. Biotechnological applications of peroxidases. Phytochem. Rev. 2004, 3, 243–256.
[25] Prabhu, V.; Lui H.; King, J.; Arabidopsis dihydropteroate synthase: general properties and inhibition by reaction product and sulfonamides; Phytochemistry. 1997, 45, 23-27.
[26] Krungkrai, S. R.; Krungkrai, J.; Malaria parasite carbonic anhydrase: inhibition of aromatic/heterocyclic sulfonamides and its therapeutic potential Asian Pacific J. Tropical Biomed. 2011, 3, 233-242.
[27] Doerge, D. R.; Decker, C. J.; Inhibition of Peroxidase-Catalyzed Reactions by Arylamines: Mechanism for the Anti-Thyroid Action of Sulfamethazine Chem. Res. Toxicol. 1994, 7, 164-169.
[28] Srinivas, N.D.; Rashmi, K.R.; Raghavarao, K.S.M.S.; Extraction and purification of a plant peroxidase by aqueous two-phase extraction coupled with gel filtration; Process Biochem. 1999, 35, 43–48.
[29] Rudrappa, T.; Lakshmanan, V.; Kaunain, R.; Singara, N.M. Neelwarne, B.. Purification and characterization of an intracellular peroxidase from genetically transformed roots of red beet (Beta Vulgaris L.). Food Chem. 2007, 105, 1312–1320.
[30] Onsa, G. H.; Saari, N.; Selamat, J.; Bakar J. Purification and characterization of membrane-bound peroxidases from metroxylon sagu; Food Chem. 2004, 85, 365–376.
[31] Aspuru, E. O.; Zato´n, A. M L. Effect of glutathione on horseradish peroxidase activity; Spectrochim. Acta A Mol. Biomol. Spectrosc. 1999, 55, 2343–2346.
[32] Mishra B.; Priyadarsini K. I.; Mohan H.; Mugesh G. Horseradish peroxidase inhibition and antioxidant activity of ebselen and related organoselenium compounds. Bioorgan. & Medicin. Chem. Lett. 2006, 16, 5334–5338.
[33] Sariri, R.; Jafarian, V.; Hassan Sajedi, R.; Khajeh, Kh.; Inhibition of horseradish peroxidase by thiol type inhibitors: Mercaptoethanol and mercaptoacetic acid; J. Mol. Liq. 2006, 128, 175–177.
[34] Kabeya, L. M.; Marchi, A. A.; Kanashiro, A.; Lopes, N. P.; Silva, C. H. T. P.; Pupo, M. T.; Lucisano-Valim, Y. M.; Inhibition of horseradish peroxidase catalytic activity by new 3-phenylcoumarin derivatives: Synthesis and structure–activity relationships; Bioorg. & Med. Chem. 2007, 15, 1516–1524.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.